
Abstract

Web-based malware and attacks are proliferating
rapidly on the Internet. New web security mechanisms
are also rapidly growing in number, although in an
incoherent fashion. In this position paper, we give a
brief overview of the ravaged web security landscape,
and the various seemingly piece-wise approaches
being taken to mitigate the threats. We then propose
that with some cooperation, we can likely architect
approaches that are more easily wielded and provide
extensibility for the future. We provide thoughts on
where and how to begin coordinating the work.

1. Introduction

Over the past few years, we have seen a
proliferation of AJAX-based web applications (AJAX
being shorthand for asynchronous JavaScript and
XML), as well as Rich Internet Applications (RIAs),
based on so-called Web 2.0 technologies. These
applications bring both luscious eye-candy and
convenient functionality—e.g. social networking—to
their users, making them quite compelling. At the same
time, we are seeing an increase in attacks against these
applications and their underlying technologies [1]. The
latter include (but aren't limited to) Cross-Site-Request
Forgery (CSRF) -based attacks [2], content-sniffing
cross-site-scripting (XSS) attacks [3], attacks against
browsers supporting anti-XSS policies [4],
clickjacking attacks [5], malvertising attacks [6], as
well as man-in-the-middle (MITM) attacks against
“secure” (e.g. Transport Layer Security (TLS/SSL)-
based [7]) web sites along with distribution of the tools
to carry out such attacks (e.g. sslstrip) [8].

During the same time period we have also
witnessed the introduction of new web security
indicators, techniques, and policy communication
mechanisms sprinkled throughout the various layers of
the Web and HTTP. We have a new cookie security
flag called HTTPOnly [9]. We have the anti-
clickjacking X-Frame-Options HTTP header [10], the
Strict-Transport-Security HTTP header [11], anti-
CSRF headers (e.g. Origin) [12], an anti-sniffing

header (X-Content-Type-Options: nosniff)
[13], various approaches to content restrictions [14]
[15] and notably Mozilla’s Content Security Policy
(CSP; conveyed via a HTTP header) [16], the W3C's
Cross-Origin Resource Sharing (CORS; also conveyed
via a HTTP header) [17], as well as RIA security
controls such as the crossdomain.xml file used to
express a site's Adobe Flash security policy [18].
There's also the Application Boundaries Enforcer
(ABE) [19], included as a part of NoScript [20], a
popular Mozilla Firefox security extension. Sites can
express their ABE rule-set at a well-known web
address for downloading by individual clients [21],
similarly to Flash's crossdomain.xml. Amidst this
haphazard collage of new security mechanisms at least
one browser vendor has even devised a new HTTP
header that disables one of their newly created security
features: witness the X-XSS-Protection header that
disables the new anti-XSS features [22] in Microsoft's
Internet Explorer 8 (IE8).

Additionally, there are various proposals aimed at
addressing other facets of inherent web vulnerabilities,
for example: JavaScript postMessage-based mashup
communications [23], hypertext isolation techniques
[24], and service security policies advertised via the
Domain Name System (DNS) [25]. Going even
further, there are efforts to redesign web browser
architectures [26], of which Google Chrome and IE8
are deployed examples. An even more radical
approach is exhibited in the Gazelle Web Browser
[27], which features a browser kernel embodied in a
multi-principal OS construction providing cross-
principal protection and fair sharing of all system
resources.

Not to be overlooked is the fact that even though
there is a plethora of “standard” browser security
features—e.g. the same origin policy, network-related
restrictions, rules for third-party cookies, content-
handling mechanisms, etc. [28]—they are not
implemented uniformly in today's various popular
browsers and RIA frameworks [29]. This makes life
even harder for web site administrators in that
allowances must be made in site security posture and

The Need for a Coherent Web Security Policy Framework

Jeff Hodges and Andy Steingruebl
PayPal, Inc.

{Jeff.Hodges,asteingruebl}@PayPal.com

approaches in consideration of which browser a user
may be wielding at any particular time.

Although industry and researchers collectively are
aware of all the above issues, we observe that the
responses to date have been issue-specific and
uncoordinated. What we are ending up with looks
perhaps similar to Frankenstein’s monster [30]—a
design with noble intents but whose final execution is
an almost-random amalgamation of parts that do not
work well together. It can even cause destruction on its
own [31].

2. Towards a coherent site security policy
framework

From our perspective as web site security
practitioners, we believe that in the intermediate term it
will be beneficial if we can work together with the
goal of having deployed web browsers featuring more
coherent security properties than they do today. We
feel that cooperatively working to address specific
subsets of the overall problem space will yield
measurable results for both site operators and our
users.

For example, we want to be able to deploy security
policies for site-wide cookie handling, content
restrictions, secure connection preferences, and various
other things. We believe that continuing the current
defacto practice of designing new, disjoint, HTTP
headers for expressing individual facets of overall site
security policies is not desirable for even the
intermediate term. The individual headers, however
expeditious in the near-term, should be replaced with a
more generic security policy communication
mechanism for the Web—a “website security policy
framework”. This policy communication mechanism
must be secure and should have two facets, one for
communicating securely out-of-band of the HTTP
protocol to allow for secure client policy store
bootstrapping, and then another in-band over
HTTP/HTTPS for ease of policy delivery,
configuration, and to leverage existing deployments.

For out-of-band secure client policy store
bootstrapping, potential approaches are factory-
installed web browser configuration, site security
policy download a la Flash's crossdomain.xml and
Maone's ABE for Web Authors [21], and DNS-based
policy advertisement leveraging the security of DNS
Security (DNSSEC) [32].

For in-band policy communication1, we believe that
a regime based on HTTP header(s) is appropriate.
However we must devise a generalized, extensible
HTTP security header(s) such that the on-going

1The distinction between in-band and out-of-band signaling is difficult to
characterize because some seemingly out-of-band mechanisms rely on the
same protocols (HTTP/HTTPS) and infrastructure (transparent proxy servers)
as the protocols they ostensibly protect.

“bloat” of the number of disjoint HTTP security
headers is mitigated and there is a documented
framework that we can leverage as new approaches
and/or threats emerge. It may be reasonable to devise a
small set of headers to convey different classes of
policies, e.g. web application content policies versus
web application network capabilities policies.

In general, what we are striving for is to provide
web site administrators the tools for managing, in a
least privilege [33] manner, the overall security
characteristics of their web site/applications when
realized in the context of user agents.

Regardless of the overall approaches chosen for
conveying site security policies, we believe that to be
deployed at Internet-scale, and to be as widely usable
as possible for both novice and expert alike, the overall
solution approach will need to address these three
points of tension:

1. Granularity: There has been much debate
during the discussion of some policy mechanisms (e.g.
CSP) as to how fine-grained such mechanisms should
be. The argument against fine-grained mechanisms is
that site administrators will cause themselves pain by
instantiating policies that do not yield the intended
results. E.g. simply copying the expressed policies of a
similar site. The claim is that this would occur for
various reasons stemming from the mechanisms'
complexity [34].

2. Configurability: Not infrequently, the
complexity of underlying facilities, e.g. in server
software, is not well-packaged and thus administrators
are obliged to learn more about the intricacies of these
systems than otherwise might be necessary. This is
sometimes used as an argument for “dumbing down”
the capabilities of policy expression mechanisms [34].

3. Usability: Research shows that when security
warnings are displayed, users are often given too much
information as well as being allowed to relatively
easily bypass the warnings and continue with their
potentially compromising activity [35] [36] [37] [38]
[39]. Thus users have become trained to “click
through” security notifications “in order to get work
done”, though not infrequently rendering themselves
insecure and perhaps compromised [40].

3. Discussion

As for the overall policy mechanism, we advocate a
combination of CSP and ABE, or their employment in
tandem, as a starting point for a multi-vendor
approach. For a near-term policy delivery mechanism,
we advocate use of both HTTP headers and a policy
file at a well-known location. Leveraging DNSSEC is
attractive in the intermediate term, i.e. as it becomes
more widely deployed.

In terms of granularity, vast arrays of stand-alone
blog, wiki, hosted web account, and other “simple”
web sites could ostensibly benefit from relatively
simple, pre-determined policies. However, complex
sites—e.g. payment, ecommerce, software-as-a-
service, mashup sites, etc.—often differ in various
ways, as well as being inherently complex
implementation-wise. One-size-fits-all policies will
generally not work well for them. Thus, we believe
that to be effective for a broad array of web site and
application types, the policy expression mechanism
must fundamentally facilitate fine-grained control. For
example, CSP offers such control. In order to address
the less complex needs of the more simple classes of
web sites, the policy expression mechanism could have
a “macro”-like feature enabling “canned policy
profiles”. Or, the configuration facilities of various
components of the web infrastructure can be enhanced
to provide an appropriately simple veneer over the
complexity.

Thus, with respect to configurability, development
effort should be applied to creating easy-to-use
administrative interfaces addressing the simple cases,
like those mentioned above, while providing advanced
administrators the tools to craft and manage fine-
grained multi-faceted policies. Thus more casual or
novice administrators can be aided in readily choosing,
or be provided with, safe default policies while other
classes of sites have the tools to craft the detailed
policies they require. Examples of such an approach
are Microsoft's “Packaging Wizard” [41] that easily
auto-generates a quite complicated service deployment
descriptor on behalf of less experienced administrators,
and Firefox's simple Preferences dialog [42] as
compared to its detailed about:config configuration
editor page [43]. In both cases, simple usage by
inexperienced users is anticipated and provided for on
one hand, while complex tuning of the myriad
underlying preferences is provided for on the other.

In the case of usability, much has been learned over
the last few years about what does and does not work
with respect to security indicators in web browsers and
web pages, as noted above, these lessons should be
applied to the security indicators rendered by new
proposed security mechanisms. We believe that in
cases of user agents venturing into insecure situations,
their response should be to fail the connections by
default without user recourse, rather than displaying
warnings along with bypass mechanisms, as is current
practice. For example, the Strict Transport Security
specification stipulates the former hard-fail behavior.

4. Priorities

As described above, this is a multi-faceted problem
space. We are not going to be able to attack all fronts

at once. Though, a path forward does seem reasonably
apparent. To us, the web policy mechanism and
delivery work is the crucial piece to address first—
portions of it are already reasonably well developed,
e.g. CSP and ABE. However, coordination and
cooperation will be essential going forward in order to
end up with a coherent and extensible approach. Also,
it should be a high priority for stakeholders to work to
remove any perceived barriers to cooperative design,
standardization, and wide implementation.
Determining how backwards compatibility with the
legacy inchoate approaches is addressed will be a key
part of such an effort.

In terms of the implementations, as well as their
configurability and usability aspects, explicit effort
should be devoted to providing thorough support for
less-experienced administrators and users. This means
providing thorough configuration veneers/wizards, as
well as likely performing further usability studies with
respect to what might actually constitute a step forward
in terms of security indicators and behaviors that will
work for users in general. Egelman et al provide solid
clues with respect to potential ways forward in this
regard [35].

5. How and where to organize the effort?

Historically, the “browser market” has been
characterized by vicious competition between browser
vendors. It seems to outside observers that even
security features have fallen prey to vendor
oneupmanship, leaving both users and web site
deployers in the lurch. Similarly, web server producers
have had multiple battles over features, ease of
configuration, and even versions of protocols
supported.

Given the concerted attacks Internet outlaws are
making on web-based ecommerce and users at large—
thus blemishing the notion of online commerce in the
eyes of many users (potential or current)—all involved
in architecting and constructing the Web's underlying
machinery should cooperate to move the ball forward.
The relevant parties include but are not limited to web
site deployers (e.g. PayPal), vendors of web servers,
web browsers, RIA frameworks, application servers,
and web application frameworks.

A particular difficulty in attacking the problem of
security policy mechanisms for the Web is the lack of
a single obviously appropriate forum. The two main
standards bodies working in this space are the Internet
Engineering Task Force (IETF) and the World Wide
Web Consortium (W3C). Historically the IETF has
worked on core protocols such as HTTP and the W3C
has worked on the higher layers, e.g. HTML, XML,
etc. Unfortunately many of the policies we envision
fall between and/or overlap these two layers. They are

neither part of the core HTTP protocol (and relatives
for our purposes such as TLS/SSL and DNS) nor are
they properly part of HTML itself.

At this point we feel that the policy mechanism
work having to do with network communications, e.g.
STS and facets of ABE, as well as perhaps the policy
delivery mechanism work, should occur in the IETF.
We will be working towards that goal this year. Since
CSP is specifically about content, the W3C is arguably
a natural home for it, although its authors would have
to say.

In any case we believe that the strengths of both of
these standards bodies and perhaps others with
particular skills in Human-Computer Interaction
should be brought to bear on this problem space.

6. Conclusion

We believe the time is right for a concerted effort
by various stakeholders to create a set of robust
standards coherent Web security policy framework(s).
We see the continued ad-hoc creation of new security
mechanisms as inevitable, but with coordination and a
well-specified applicable framework(s), we can
maximize the benefit and reduce the risk of
introducing such new security mechanisms. We
believe that a generalized web security policy
framework is within reach and is achievable in the
near-to-intermediate-term.

7. Acknowledgements

We thank the anonymous reviewers, Ben Adida,
and Bill Smith for their helpful suggestions and
feedback.

8. References

[1] Breach Security, “THE WEB HACKING
INCIDENTS DATABASE 2009,” Aug. 2009.
http://www.breach.com/resources/whitepapers/downloads/WP_The
WebHackingIncidents-2009.pdf

[2] R. Auger, The Cross-Site Request Forgery
(CSRF/XSRF) FAQ, 2007.
http://www.cgisecurity.com/articles/csrf-faq.shtml

[3] A. Barth, J. Caballero, and D. Song, “Secure
Content Sniffing for Web Browsers--or How to
Stop Papers from Reviewing Themselves,”
Proceedings of the 30th IEEE Symposium on
Security & Privacy, Oakland, CA: 2009.

[4] D. Goodin, “Major IE8 flaw makes 'safe' sites
unsafe - Microsoft's XSS buster busted,” The
Register, Nov. 2009.
http://www.theregister.co.uk/2009/11/20/internet_explorer_security_
flaw/

[5] J. Grossman, “Clickjacking: Web pages can see
and hear you,” Oct. 2008.
http://jeremiahgrossman.blogspot.com/2008/10/clickjacking-web-
pages-can-see-and-hear.html

[6] W. Salusky, Malvertising, 2007.
http://isc.sans.org/diary.html?storyid=3727

[7] T. Dierks and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.2,”
RFC5246, Internet Engineering Task Force,
Aug. 2008.
http://www.ietf.org/rfc/rfc5246.txt

[8] M. Marlinspike, SSLSTRIP, 2009.
http://www.thoughtcrime.org/software/sslstrip/

[9] Scope of HTTPOnly Cookies.
http://docs.google.com/View?docid=dxxqgkd_0cvcqhsdw

[10] E. Lawrence, IE8 Security Part VII:
ClickJacking Defenses, 2009.
http://blogs.msdn.com/ie/archive/2009/01/27/ie8-security-part-vii-
clickjacking-defenses.aspx

[11] J. Hodges, C. Jackson, and A. Barth, “Strict
Transport Security,” Dec. 2009.
http://lists.w3.org/Archives/Public/www-archive/2009Dec/att-
0048/draft-hodges-strict-transport-sec-06.plain.html

[12] A. Barth, C. Jackson, and I. Hickson, “The Web
Origin Concept,” Internet-Draft, work in
progress, Internet Engineering Task Force, 2009.
http://tools.ietf.org/html/draft-abarth-origin

[13] E. Lawrence, IE8 Security Part VI: Beta 2
Update, 2008.
http://blogs.msdn.com/ie/archive/2008/09/02/ie8-security-part-vi-
beta-2-update.aspx

[14] G. Markham, Content restrictions, 2007.
http://www.gerv.net/security/content-restrictions/

[15] T. Jim, N. Swamy, and M. Hicks, “BEEP:
Browser-Enforced Embedded Policies,”
Proceedings of the 16th International World
Wide Web Conference, Banff, Alberta, Canada,
2007.

[16] B. Sterne and S. Stamm, “Content Security
Policy (CSP),” 2009.
https://wiki.mozilla.org/Security/CSP/Specification

[17] A.V. Kesteren, “Cross-Origin Resource Sharing
(CORS),” Mar. 2009.
http://www.w3.org/TR/2009/WD-cors-20090317/

[18] Adobe Systems, “Cross-domain policy file
specification.”
http://learn.adobe.com/wiki/download/attachments/64389123/CrossD
omain_PolicyFile_Specification.pdf?version=1

[19] G. Maone, ABE - Application Boundaries
Enforcer, 2009.
http://noscript.net/abe/

[20] G. Maone, NoScript.
http://noscript.net/

[21] G. Maone, ABE for Web Authors, 2009.
http://noscript.net/abe/web-authors.html

[22] Microsoft, “Event 1046 - Cross-Site Scripting
Filter,” MSDN Library, undated.
http://msdn.microsoft.com/en-
us/library/dd565647%28VS.85%29.aspx

[23] A. Barth, C. Jackson, and W. Li, “Attacks on
JavaScript Mashup Communication,”
Proceedings of the Web 2.0 Security and
Privacy Workshop, 2009.

[24] M. Ter Louw, P. Bisht, and V. Venkatakrishnan,
“Analysis of Hypertext Isolation Techniques for
XSS Prevention,” Proceedings of the Web 2.0
Security and Privacy Workshop, 2008 .

[25] A. Ozment, S.E. Schechter, and R. Dhamija,
“Web Sites Should Not Need to Rely on Users
to Secure Communications,” W3C Workshop on
Transparency and Usability of Web
Authentication, 2006.

[26] C. Reis, A. Barth, and C. Pizano, “Browser
Security: Lessons from Google Chrome,” ACM
Queue, 2009, pp. 1-8.

[27] H.J. Wang, C. Grier, A. Moshchuk, S.T. King,
P. Choudhury, and H. Venter, “The Multi-
Principal OS Construction of the Gazelle Web
Browser,” USENIX Security Symposium, 2009.

[28] M. Zalewski, Browser Security Handbook.
http://code.google.com/p/browsersec/

[29] A. Stamos, D. Thiel, and J. Osborne, Living in
the RIA World: Blurring the Line between Web
and Desktop Security, BlackHat presentation,
iSecPartners, 2008.
https://www.isecpartners.com/files/RIA_World_BH_2008.pdf

[30] Mary Shelley, “Frankenstein, or The Modern
Prometheus,” ca. 1831.
http://en.wikipedia.org/wiki/Frankenstein%27s_monster

[31] D. Goodin, “cPanel, Netgear and Linksys
susceptible to nasty attack - Unholy Trinity,”
The Register, 2009.
http://www.theregister.co.uk/2009/08/02/unholy_trinity_csrf/

[32] R. Arends, R. Austein, M. Larson, D. Massey,
and S. Rose, “DNS security introduction and
requirements,” RFC4033, Internet Engineering
Task Force, Mar. 2005.
http://www.ietf.org/rfc/rfc4033.txt

[33] J.H. Saltzer and M.D. Schroeder, “The
Protection of Information in Computer
Systems,” Communications of the ACM, vol.
17, Jul. 1974.

[34] I. Hickson and many others, “Comments on the
Content Security Policy specification,”
discussion on mozilla.dev.security newsgroup.
http://groups.google.com/group/mozilla.dev.security/browse_frm/thread/87ebe5c
b9735d8ca?
tvc=1&q=Comments+on+the+Content+Security+Policy+specification

[35] S. Egelman, L.F. Cranor, and J. Hong, “You've
Been Warned: An Empirical Study of the
Effectiveness of Web Browser Phishing
Warnings,” CHI 2008, April 5 - 10, 2008,
Florence, Italy, 2008.

[36] S.E. Schechter, R. Dhamija, A. Ozment, and I.
Fischer, “The Emperor's New Security
Indicators,” Proceedings of the 2007 IEEE
Symposium on Security and Privacy.

[37] R. Dhamija and J.D. Tygar, “The Battle Against
Phishing: Dynamic Security Skins,”
Proceedings of the 2005 Symposium on Usable
Privacy and Security (SOUPS).

[38] J. Sobey, T. Whalen, R. Biddle, P.V. Oorschot,
and A.S. Patrick, Browser Interfaces and
Extended Validation SSL Certificates: An
Empirical Study, Ottawa, Canada: School of
Computer Science, Carleton University, 2009.

[39] J. Sunshine, S. Egelman, H. Almuhimedi, N.
Atri, and L.F. Cranor, “Crying Wolf: An
Empirical Study of SSL Warning Effectiveness,”
USENIX Security Symposium, 2009.

[40] C. Jackson and A. Barth, “ForceHTTPS:
Protecting High-Security Web Sites from
Network Attacks,” Proceedings of the 17th
International World Wide Web Conference
(WWW), 2008.

[41] Microsoft, “Packaging Wizard.”
http://msdn.microsoft.com/en-us/library/aa157732(office.10).aspx

[42] Mozilla, “Options window.”
http://support.mozilla.com/en-US/kb/Options+window

[43] S. Yegulalp, “Hacking Firefox: The secrets of
about:config,” ComputerWorld, May. 2007.
http://www.computerworld.com/s/article/9020880/Hacking_Firefox_
The_secrets_of_about_config

	1. Introduction
	2. Towards a coherent site security policy framework
	3. Discussion
	4. Priorities
	5. How and where to organize the effort?
	6. Conclusion
	7. Acknowledgements
	8. References

